博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
猜数游戏
阅读量:6716 次
发布时间:2019-06-25

本文共 2213 字,大约阅读时间需要 7 分钟。

来源:牛客网2017年校招全国统一模拟笔试(第五场)编程题集合

本文是转载博客,原博客:

题目:

牛牛和羊羊在玩一个有趣的猜数游戏。在这个游戏中,牛牛玩家选择一个正整数,羊羊根据已给的提示猜这个数字。第i个提示是”Y”或者”N”,表示牛牛选择的数是否是i的倍数。例如,如果提示是”YYNYY”,它表示这个数使1,2,4,5的倍数,但不是3的倍数。注意到一些提示会出现错误。例如: 提示”NYYY”是错误的,因为所有的整数都是1的倍数,所以起始元素肯定不会是”N”。此外,例如”YNNY”的提示也是错误的,因为结果不可能是4的倍数但不是2的倍数。现在给出一个整数n,表示已给的提示的长度。请计算出长度为n的合法的提示的个数。例如 n = 5:合法的提示有:YNNNN YNNNY YNYNN YNYNY YYNNN YYNNYYYNYN YYNYY YYYNN YYYNY YYYYN YYYYY所以输出12 输入描述:
输入包括一个整数n(1 ≤ n ≤ 10^6),表示已给提示的长度。
输出描述:
输出一个整数,表示合法的提示个数。因为答案可能会很大,所以输出对于1000000007的模
输入例子1:
5
输出例子1:
12

分析

这道题比较难。

首先运用动态规划的思想

首先我们分析,dp[i]表示前i个数的合法个数

当第i个数是素数的时候,前面除了1都没有能除尽的,所以这个位置可以随便选Y或N,也就是2种情况,所以dp[i] = dp[i-1]*2.
当第i个数不是素数的幂次,比如6,10这种数,那么他们的情况实际上是被前面的数所决定的,不用对他们进行考虑了,比如对6来说,6=2*3,所以6的状态是由2和3决定的,如果2,3为YY,那么6必然是Y,其他情况6必须是N,所以dp[i] = dp[i-1].
当第i个数是素数的幂次的时候,也就是2,4,8,16这种数,这时候情况就复杂了。
假设现在有2,4,8,那么有多少种情况呢,我们仔细分析也能找出规律 YYY,YNN,NNN,YYN就这四种情况,
对于2,4 YN,YY,NN三种情况我们发现实际上也是有规律的,首先都能或者都不能两种,然后就是从左到右添加Y:YNN,YYN。
所以对于这种情况,我们得出规律,如果有n个幂次,就有n+1中可行的情况。

分析完之后,我们就可以得出计算方法,对于12:

2,4,8这三个数是幂次,有4中可能
3,9 这两个数幂次,有三种可能
5,7,11,分别是两种可能
其他的数都由其他数决定
所以最后结果就是4*3*2*2*2=96种

所以我们思考一下,最后就变成了找素数和素数幂次的个数了。

代码:

import java.util.*;public class Main {    //MAX就是根据输入的n所创建的数组大小    final static int MAX = (int) (1e6+5);    final static int MOD = (int) (1E9+7);    static boolean[] visited = new boolean[MAX];    public static void main(String[] args) {        Scanner in = new Scanner(System.in);        int n = in.nextInt();        in.close();        System.out.println(helper(n));    }    private static long helper(int n) {        //最终的输出值        long ans = 1;        //1的位置肯定是Y,固定的。所以从2开始计算        for(int i=2;i<=n;i++) {            //保存i的幂的次数            int count = 0;            //当visited[i]是true的时候,说明它是前面某个数的倍数,那他的值也就不由他决定了,没有必要继续往下走了,            if(visited[i])                continue;            //将i的倍数的位置全部设定为true,以后经过这个位置就跳过继续循环            for(int j=i+i;j<=n;j+=i) {                visited[j] = true;            }            long mi = i;            //计算i的幂的次数,值要小于等于n            while(mi <= n) {                count++;                mi = mi*i;            }            //计算有多少和合法的组合            ans = ans * (count+1) % MOD;        }        return ans;    }}

转载于:https://www.cnblogs.com/loren-Yang/p/7466120.html

你可能感兴趣的文章
Linux Kernel 4.9-rc8,4.9 分支最后一个候选版
查看>>
《Web异步与实时交互——iframe AJAX WebSocket开发实战》—— 2.2 相关关键技术及工作原理...
查看>>
《Nmap渗透测试指南》—第1章1.5节Mac OS安
查看>>
学习和使用 PHP 应该注意的10件事
查看>>
.NET Framework 源码
查看>>
centos上一键安装jdk、tomcat脚本
查看>>
ArrayList源码分析
查看>>
JS Object的静态方法汇总( 上 )
查看>>
jvm疯狂吞占内存,罪魁祸首是谁?
查看>>
sql server随机函数
查看>>
优朋普乐:OTT正重构电视版图
查看>>
Ubuntu 14.04 LTC 有线网络——网线不识别,灯不亮问题
查看>>
21_css布局2_浮动布局.html
查看>>
DateUtils 单元下的公用函数目录
查看>>
jQuery 练习[二]: 获取对象(1) - 基本选择与层级
查看>>
Sublime Text 2 快捷键用法大全
查看>>
linux非交互式生成秘钥
查看>>
C练习小代码-20151108
查看>>
以太坊RPC接口使用
查看>>
高并发写入mysql的设计
查看>>